

Introduction

OOD Sample

Motivation:

Contribution:

Methodology

Introducing a novel two-branch classifier, a biased-branch encourages the classifier to identify domain-specific (superficial) features, a general-branch captures domain-generalized (semantic) features.

Modality-Agnostic Debiasing for Single Domain Generalization

Sanqing Qu, Yingwei Pan, Guang Chen, Ting Yao, Changjun Jiang, Tao Mei

1Tongji Univesity, 2 HiDream.ai Inc.

Deep Neural Networks (DNNs) fail to generalize well to outside of distribution (OOD) data due to the notorious short-cut learning.

Existing single domain generalization (single-DG) commonly devise various data-augmentation algorithms, which are typically modality-specific.

We target for a versatile Modality-Agnostic Debiasing (MAD) framework for single-DG, that enables generalization for different modalities.

 \succ MAD is pluggable to most single-DG models.

Experiments

Datasets Configuration:

We validate the superiority of MAD in a variety of single-DG scenarios with different modalities, including recognition on 1D texts, 2D images, 3D point clouds, and semantic segmentation on 2D images. We inject our MAD to several baseline methods, including ERM, pAdaIn, *Mixstyle*, *DSU*, *etc*.

Qualitative Results:

(a) PACS

Quantitively Results:

(b) VLCS

Single-DG results on 1D texts (Amazon-Review dataset)

Methods	Venue	D	E	K	В	Avg
ERM	-	74.17	73.17	73.67	71.58	73.15
ERM w/ MAD		76.08	74.33	73.33	74.67	74.60
Mixup [61]	ICLR 18	74.83	72.17	73.58	72.67	73.31
Mixup w/ MAD		75.33	73.58	74.33	73.75	74.25
Mixstyle [65]	ICLR 21	74.75	73.17	74.33	72.33	73.65
Mixstyle w/ MAD		75.17	72.75	75.00	75.25	74.54
DSU [30]	ICLR 22	75.00	73.45	75.25	73.08	74.20
DSU w/ MAD		76.42	74.33	76.50	75.17	75.60

Single-DG results on 3D point cloud (PointDA-10 dataset).

Methods	Venue	SH	SC	Μ	Avg
ERM	-	25.69	45.09	32.94	34.57
ERM w/ MAD		31.11	48.07	34.69	37.91
Mixstyle [65]	ICLR 21	27.18	46.25	27.93	33.78
Mixstyle w/ MAD		29.89	51.01	33.57	38.16
DSU [30]	ICLR 22	25.74	43.53	31.61	33.63
DSU w/ MAD		28.92	47.69	32.72	36.45

Analysis Results:

Acknowledgment: This work is supported by Shanghai Municipal Science and Technology Major Project (No.2018SHZDZX01), ZJ Lab, and Shanghai Center for Brain Science and Brain-Inspired Technology, and the Shanghai Rising Star Program (No.21QC1400900).

10 20 30

(d) GTA-5 \rightarrow Cityscapes

(c) PointDA-10

Hyper-parameter Sensitivity Analysis on 1D texts.

Single-DG results on 2D images (PACS dataset).

Methods	Venue	Р	А	С	S	Avg
ERM		33.65	65.38	64.20	34.15	49.34
ERM w/ MAD		32.32	66.47	69.80	34.54	50.78
Augmix [24]	ICI D 10	38.30	66.54	70.16	52.48	56.87
Augmixw/ MAD	ICLK 19	36.19	68.04	73.11	54.44	57.94
pAdaIn [34]	CVDD 21	33.66	64.96	65.24	32.04	48.98
pAdaIn w/ MAD	CVPR 21	34.66	65.64	70.10	42.85	53.31
Mixstyle [65]	ICLD 21	37.44	67.60	70.38	34.57	52.50
Mixstyle w/ MAD	ICLK 21	41.57	69.88	71.61	41.58	56.16
ACVC [15]	CVDD 22	48.05	73.68	77.39	55.30	63.61
ACVC w/ MAD	UVPR 22	52.95	75.51	77.25	57.75	65.87

Single-DG results on 2D images segmentation (GTA-5 \rightarrow Cityscapes).

Methods	Venue	mIOU(%)	mACC(%)
ERM	-	37.0	51.5
pAdaIN [34]	CVPR 21	38.3	52.1
Mixstyle [65]	ICLR 21	40.3	53.8
DSU [30]	ICLR 22	42.3	54.7
ERM w/ MAD	-	38.9	52.2
DSU w/ MAD		43.8	57.2

Confusion Matrix Analysis on 2D images (PACS).