

Introduction

 \succ The source data free universal domain adaptation (SF-UniDA) based on standard pre-trained models and unlabeled target data.

Methodology

- > Designing the one-vs-all global clustering to achieve pseudolabeling under inconsistent label space.
- \succ Introducing the K-NN local clustering to alleviate negative transfer.

Upcycling Models under Domain and Category Shift

Sanqing Qu^{1*}, Tianpei Zou^{1*}, Florian Röhrbein², Cewu Lu³, Guang Chen¹, Dacheng Tao⁴, Changjun Jiang¹ 1Tongji Univesity, 2 Technische Universität Chemnitz, 3 Shanghai Jiao Tong University, 4 The University of Sydney (*indicates equal contribution)

Experiments on Standard Benchmark

Datasets Configuration:

Ve evaluate GLC on Partial Domain Adaptation PDA), Open-set Domain Adaptation (OSDA), Ind Open-partial Domain Adaptation (OPDA).				Methods	SF	OPDA	OSDA	PDA	A2D	A2W	D2A	Dffice-3 D2W	1 W2A	W2D	Avg	VisDA S2R	P2R	P2S	Do R2P	omainN R2S	let S2P	S2R	Avg
				UAN [47]	X	1	X	X	59.7	58.6	60.1	70.6	60.3	71.4	63.5	34.8	41.9	39.1	43.6	38.7	38.9	43.7	41.0
	Class Split($\mathcal{Y}/\bar{\mathcal{Y}}_s/\bar{\mathcal{Y}}_t$)			CMU [11]	X		X	X	68.1	67.3	71.4	79.3	72.2	80.4	73.1	32.9	50.8	45.1	52.2	45.6	44.8	51.0	48.3
Dataset				DCC [20]	X	\checkmark	\checkmark	\checkmark	88.5	78.5	70.2	79.3	75.9	88.6	80.2	43.0	56.9	43.7	50.3	43.3	44.9	56.2	49.2
	OPDA	OSDA	PDA	OVANet [39]	X	\checkmark	\checkmark	×	85.8	79.4	80.1	95.4	84.0	94.3	86.5	53.1	56.0	47.1	51.7	44.9	47.4	57.2	50.7
		OSDIT		GATE [7]	X	\checkmark	\checkmark	\checkmark	87.7	81.6	84.2	94.8	83.4	94.1	87.6	56.4	57.4	48.7	52.8	47.6	49.5	56.3	52.1
Office-31 [37]	10/10/11	10/0/11	10/21/0	<u> </u>						(2.0)	20 (77.2	50.0	964	(10)	057	570	20.0	17.0	20.4	22.2	10.0	42.7
Office-Home [44]	10/5/50	25/0/40	25/40/0	Source-only	v	-	-	-	/0.9	63.2	39.6	11.3	52.2	86.4	64.9	25.7	57.5	38.2	47.8	38.4	32.2	48.2	43.7
	10/5/50	25/0/10		SHOT-O [22]		×		×	73.5	67.2	59.3	88.3	77.1	84.4	75.0	44.0	35.0	30.8	37.2	28.3	31.9	32.2	32.6
V1sDA-C [34]	6/3/3	6/0/6	6/6/0	UMAD [23]	\checkmark	\checkmark	\checkmark	×	79.1	77.4	87.4	90.7	90.4	97.2	87.0	58.3	59.0	44.3	50.1	42.1	32.0	55.3	47.1
DomainNet [33]	150/50/145	-	-	GLC	\checkmark	\checkmark	\checkmark	\checkmark	81.5	84.5	89.8	90.4	88.4	92.3	87.8	73.1	63.3	50.5	54.9	50.9	49.6	61.3	55.1

Hyper-parameter Analysis:

(a) sensitivity to η ($\rho = 3/4$) (b) sensitivity to ρ ($\eta = 0.3$)

Experiments on Real-world Applications

> Not just only computer science benchmarks, we also conduct experiments on several realistic applications, including remote sensing recognition, wild animal classification, and RNA-seq analysis.

Representative Results:

⁽d) H-score convergence

single-cell

Robustnesss Analysis:

(a) Ar \rightarrow Re in OPDA

(b) $Cl \rightarrow Pr$ in OPDA

de de la companya de

